Yhteystiedot

Ammattilehti.fi
Vironkatu 9, 00170 Helsinki
www.ammattilehti.fi

Janne Jokela
janne.jokela@ammattilehti.fi
050 412 9030

Taneli Jokela
taneli.jokela@ammattilehti.fi
050 320 8174

Tero Lahtinen
tero.lahtinen@ammattilehti.fi
050 464 7972

Satunnaiset kuvat

Erittäin tarkkaa anturiteknologiaa kvanttibittien ja koneoppimisen avulla

27.07.2018 11.01

quantum_magnetometre_700x400_fi_fi.jpg

Jotta kvanttiprosessorit ja herkät sensorit toimisivat tehokkaasti, niiden kvanttitiloista on saatava nopeasti informaatiota.

(Suprajohtavista alumiiniliuskoista piisirulle rakennettua kvanttibittiä voi käyttää magneettikenttien havaitsemiseen. Kuva: Babi Brasileiro/Aalto-yliopisto)

Aalto-yliopiston johtama tutkijaryhmä on kvanttifysiikan ja koneoppimisen menetelmiä yhdistelemällä kehittänyt magnetometrin, jonka tarkkuus rikkoo kvanttirajan.

Minkä tahansa asian mittaamisessa tarkkuudella on rajansa. Esimerkiksi röntgenkuvat ovat melko epäselviä, ja vain asiantunteva lääkäri pystyy tulkitsemaan niitä kunnolla. Kudosten välinen kontrasti on sangen heikko, mutta sitä voisi parantaa pidentämällä altistusaikaa, lisäämällä säteiden tehoa tai ottamalla lukuisia kuvia. Se on kuitenkin mahdotonta, koska ihmisen voi turvallisesti altistaa röntgensäteille vain rajallisen ajan ja määrän. Kuvien ottaminen taas vie aikaa ja resursseja.

Yleinen nyrkkisääntö mittaustarkkuudelle on niin sanottu kvanttiraja: tarkkuus paranee käänteisesti suhteessa käytettävissä olevien resurssien neliöjuureen. Toisin sanoen, mitä enemmän resursseja – aikaa, säteilytehoa, kuvien määrää – käytetään, sitä tarkempia mittaukset ovat. Loputtomia resursseja ei kuitenkaan ole olemassa.

Aalto-yliopiston, Zürichin teknillisen yliopiston (ETH) ja Moskovan MIPT:n ja Landau-instituutin tutkijoiden ryhmä on kuitenkin yrittänyt luoda poikkeuksen nyrkkisääntöön ja kehittänyt tavan mitata magneettikenttiä kvanttijärjestelmän avulla. Heidän magnetometrillään on mahdollista ylittää tarkkuuden kvanttiraja.

Arvostetussa npj Quantum Information -lehdessä julkaistussa artikkelissaan ryhmä osoittaa, miten magneettikentän mittaamisen tarkkuutta voidaan parantaa hyödyntämällä suprajohtavan keinotekoisen atomin, kvanttibitin, häiriötöntä tilaa. Ryhmän käyttämä kvanttibitti eli kubitti on erittäin pieni laite, joka on tehty piisirun päällä höyrystetyistä alumiiniliuskoista. Valmistustapa muistuttaa älypuhelinten ja tietokoneiden prosessorien valmistuksessa käytettävää tekniikkaa.

Magneettikenttien tarkka havaitseminen on tärkeää monilla aloilla geologisesta etsinnästä aivotoiminnan kuvantamiseen. Tutkijoiden mukaan heidän tuloksensa ovat ensi askel kvanttitehostettujen menetelmien käytölle sensoriteknologiassa.

”Halusimme rakentaa tehokkaan ja mahdollisimman vähän kohteeseen kajoavan mittaustekniikan. Esimerkiksi herkkiin kudosnäytteisiin on joko käytettävä mahdollisimman matalia tehoja tai mahdollisimman lyhyttä mittausaikaa”, Aalto-yliopiston Kvantti-tutkimusryhmän johtaja Sorin Paraoanuselittää.

Kun kvanttilaite jäähdytetään erittäin matalaan lämpötilaan, sähkövirta virtaa laitteessa ilman vastusta, ja laitteen kvanttimekaaniset ominaisuudet alkavat muistuttaa oikeiden atomien ominaisuuksia. Kun kvanttibittiä säteilytetään mikroaaltopulssilla – samantapaisella kuin tavallisessa mikroaaltouunissa – sen tila muuttuu. Muutos taas riippuu käytetystä ulkoisesta magneettikentästä: kvanttibittiä mittaamalla voidaan mitata myös magneettikenttää.

Kvanttirajan ylittämiseksi on kuitenkin tehtävä vielä yksi temppu: ottaa avuksi hahmontunnistukseksi kutsuttu koneoppimisen menetelmä.

”Teemme ensin mittauksen ja annamme sen jälkeen hahmontunnistusalgoritmin päättää tuloksen perusteella, miten parametreja pitää muuttaa, jotta magneettikentästä saadaan nopein arvio”, kertoo Andrey Lebedev, joka on osallistunut tutkimuksen tekemiseen Zürichin teknillisessä yliopistossa ja työskentelee nyt Moskovan MIPT:ssä.

”Työmme on hyvä esimerkki käytännön kvanttiteknologiasta: yhdistämällä kvantti-ilmiö koneoppimiseen perustuvaan mittaustekniikkaan magnetometrin herkkyys paranee niin, että se rikkoo kvanttirajan”, Lebedev sanoo.

Aalto-yliopiston tutkijoiden työtä on tehty osana Teknillisen fysiikan laitoksen Centre for Quantum Engineering -keskuksen QMETRO-projektia sekä Suomen Akatemian kvanttiteknologian kansallista huippuyksikköä Quantum Technology Finland. Kokeellisen tutkimuksen mahdollisti kansallinen tutkimusinfrastruktuuri OtaNano.

Tutkimusartikkeli: S. Danilin, A.V. Lebedev, A. Vepsäläinen, G.B. Lesovik, G. Blatter, ja G.S. Paraoanu, Quantum-enhanced magnetometry by phase estimation algorithms with a single artificial atom. npj Quantum Information (2018) 4: 29.
https://www.nature.com/articles/s41534-018-0078-y
doi:10.1038/s41534-018-0078-y

15.04.2024 8.00Merkittävä virstanpylväs automaatioliiketoiminnassa: Valmet lanseeraa uuden sukupolven hajautetun Valmet DNAe -ohjausjärjestelmän
12.04.2024 23.00KATSO TÄSTÄ MANSEN MÖRINÄT LÄHETYS! Ammattilehden Hyviä uutisia! tarjoaa kuljetus-, maarakennus- ja metsäalan tuoreet kuulumiset
09.04.2024 14.00HydSupply hakee osaajia palvelukseensa - katso tästä lisätietoja...
08.04.2024 11.00Sami Jerkku Marine Diesel Finland Oy:n toimitusjohtajaksi
05.04.2024 21.00KATSO TÄSTÄ 5.4. LÄHETYS! Ammattilehden Hyviä uutisia! tarjoaa kuljetus-, maarakennus- ja metsäalan tuoreet kuulumiset
04.04.2024 10.00VTT:n vuosi 2023: Liikevaihto vahvistui ja asiakastyytyväisyys koheni
03.04.2024 9.30Metsäalalla investoidaan - nyt kannattaa markkinoida!
02.04.2024 9.00Metso juhlii maailman suurimman palvelukeskuksensa avajaisia Karrathassa, Australiassa
29.03.2024 20.00KATSO PÄÄSIÄISEN LÄHETYS! Ammattilehden Hyviä uutisia! tarjoaa kuljetus-, maarakennus- ja metsäalan tuoreet kuulumiset
28.03.2024 9.00Hydoring hakee kesätyöntekijöitä - kannattaa laittaa hakemus sisään...

Siirry arkistoon »